Embryonic stem cell-specific miR302-367 cluster: human gene structure and functional characterization of its core promoter.
نویسندگان
چکیده
MicroRNAs (miRNAs) play a central role in the regulation of multiple biological processes including the maintenance of stem cell self-renewal and pluripotency. Recently, the miRNA cluster miR302-367 was shown to be differentially expressed in embryonic stem cells (ESCs). Unfortunately, very little is known about the genomic structure of miRNA-encoding genes and their transcriptional units. Here, we have characterized the structure of the gene coding for the human miR302-367 cluster. We identify the transcriptional start and functional core promoter region which specifically drives the expression of this miRNA cluster. The promoter activity depends on the ontogeny and hierarchical cellular stage. It is functional during embryonic development, but it is turned off later in development. From a hierarchical standpoint, its activity decays upon differentiation of ESCs, suggesting that its activity is restricted to the ESC compartment and that the ESC-specific expression of the miR302-367 cluster is fully conferred by its core promoter transcriptional activity. Furthermore, algorithmic prediction of transcription factor binding sites and knockdown studies suggest that ESC-associated transcription factors, including Nanog, Oct3/4, Sox2, and Rex1 may be upstream regulators of miR302-367 promoter. This study represents the first identification, characterization, and functional validation of a human miRNA promoter in stem cells. This study opens up new avenues to further investigate the upstream transcriptional regulation of the miR302-367 cluster and to dissect how these miRNAs integrate in the complex molecular network conferring stem cell properties to ESCs.
منابع مشابه
P-157: Polymorphic Core Promoter GA-repeats Alter Gene Expression of The Early Embryonic Developmental Genes
Background: We examine the GA-repeat core promoters of MECOM and GABRA3 in human embryonic kidney-293 cell line and show that those GA-repeats have promoter activity,and those different alleles of the repeats can significantly alter gene expression.We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution. Materials and M...
متن کاملEnrichment of A Rare Subpopulation of miR-302-Expressing Glioma Cells by Serum Deprivation
OBJECTIVE MiR-302-367 is a cluster of polycistronic microRNAs that are exclusively expressed in embryonic stem (ES) cells. The miR-302-367 promoter is functional during embryonic development but is turned off in later stages. Motivated by the cancer stem cell hypothesis, we explored the potential expression of miR-302 in brain tumor cell lines. MATERIALS AND METHODS In the present experimenta...
متن کاملEpigenetic regulation of embryonic stem cell marker miR302C in human chondrosarcoma as determinant of antiproliferative activity of proline-rich polypeptide 1
Metastatic chondrosarcoma of mesenchymal origin is the second most common bone malignancy and does not respond either to chemotherapy or radiation; therefore, the search for new therapies is relevant and urgent. We described recently that tumor growth inhibiting cytostatic proline-rich polypeptide 1, (PRP-1) significantly upregulated tumor suppressor miRNAs, downregulated onco-miRNAs in human c...
متن کاملMicroRNA-302/367 Cluster Governs hESC Self-Renewal by Dually Regulating Cell Cycle and Apoptosis Pathways
miR-302/367 is the most abundant miRNA cluster in human embryonic stem cells (hESCs) and can promote somatic cell reprogramming. However, its role in hESCs remains poorly understood. Here, we studied functional roles of the endogenous miR-302/367 cluster in hESCs by employing specific TALE-based transcriptional repressors. We revealed that miR-302/367 cluster dually regulates hESC cell cycle an...
متن کاملHighly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency.
Transcription factor-based cellular reprogramming has opened the way to converting somatic cells to a pluripotent state, but has faced limitations resulting from the requirement for transcription factors and the relative inefficiency of the process. We show here that expression of the miR302/367 cluster rapidly and efficiently reprograms mouse and human somatic cells to an iPSC state without a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 28 21 شماره
صفحات -
تاریخ انتشار 2008